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7.1 Introduction  

Experience has shown that a particle’s motion in an internal reference frame is 

correctly described by the Newtonian equation (see chapter 2) 

𝐹 = 𝑝                                    (7-1) 

If the particle is not required to move in some complicated manner and if 

rectangular coordinates are used to describe the motion, then usually the equations of 

motion are relatively simple and we can use Newtonian equation to solve the 

problem and to find the equation of motion. But if either of these restrictions is 

removed, the equations can can become quite complex and difficult to manipulate.  

In fact, to solve the problem by using the Newtonian procedure (see Chapter 

2), we must know all the forces because the quantity F that appears in the fundamental 

equation is the total force acting on a body. To circumvent some of the practical 

difficulties that arise in attempts to apply Newton’s equations to particular problems, 

alternate procedure may be developed. The method is known as Hamilton’s Principle 

and the equations of motion resulting from the application of this principle are called 

the Lagrangian’s equations.       

 If Lagrangian’s equations are to constitute a proper description of dynamics of 

particles, they must be equivalent to Newton’s equations. On the other hand, 

Hamilton’s Principle-Lagrangian and Hamiltonian 

Dynamics 

Chapter 7 
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Hamilton’s Principle can be applied to a wide range of physical phenomena 

(particularly those involving fields) not usually associated with Newton’s equations.  

 

7.2 Hamilton’s Principle 

In terms of calculus of variations, Hamilton’s Principle becomes  

𝛿 𝑇 − 𝑈 𝑑𝑡 = 0
+,

+-
																			(7.2)						

	
Where	𝛿	is	an	operation	that	represents	a	variation	of	any	particular	system	parameter.	While	

𝑇	is the kinetic energy of the system and 𝑈 is the potential energy of the system.  

The kinetic energy of a particle expressed in fixed, Cartesian (rectangular) coordinated 

is a function only of the 𝑥5 and if the particle moves in a conservative force field, the 

potential energy is a function only of the 𝑥5 ; 

𝑇 = 𝑇(𝑥5),          𝑈 = 𝑈(𝑥5)         (7.3) 

If we define the differences of these quantities to be  

𝐿 = 𝑇 − 𝑈 = 𝐿(𝑥5, 𝑥5)                  (7.4) 

𝐿	 : The differences between the kinetic and potential energies of a system, called the 

Lagrangian of the system.  

The Euler-Lagrange equations is given by  

89
8:;

− <
<+

89
8:;

= 0,					𝑖 = 1,2,3             (7.5) 
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These are the Lagrange equation of motion for the particle.  

Answer:  

With the usual expressions for the kinetic and potential energies, we have  

𝐿 = 𝑇 − 𝑈                          (7.6) 

𝐿 = 1
2𝑚𝑥

A − 1
2 𝑘𝑥

A            (7.7) 

89
8:

= −𝑘𝑥                          (7.8) 

89
8:

= 𝑚𝑥                            (7.9) 

<
<+

89
8:

= 𝑚𝑥                   (7.10) 

Substituting these results into equation 5.5, this leads to  

𝑚𝑥 + 𝑘𝑥 = 0																			 7.11  

Equation 5.11 is identical with the equation of motion obtained using Newtonian 

mechanics (See equation 3.5, Chapter 3). 

 

 

Answer:  

The kinetic and potential energies of the system are given by:  

Example 7.1:  Use the Lagrange equation to obtain the equation of motion for one-

dimensional harmonic oscillator.  

Example 7.2: Use the Lagrange equation to obtain the equation of motion of Simple 

pendulum. 
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𝑇 =
1
2𝑚𝑙

A𝜃A 

𝑈 = 𝑚𝑔𝑙(1 − cos 𝜃) 

Thus, 

𝐿 = 𝑇 − 𝑈 

𝐿 =
1
2𝑚𝑙

A𝜃A − 𝑚𝑔𝑙(1 − cos 𝜃) 

𝜕𝐿
𝜕𝜃 = −𝑚𝑔𝑙	𝑠𝑖𝑛𝜃 

𝜕𝐿
𝜕𝜃

= 𝑚𝑙A𝜃 

𝑑
𝑑𝑡

𝜕𝐿
𝜕𝜃

= 𝑚𝑙A𝜃 

Therefore, 

𝜕𝐿
𝜕𝜃 −

𝑑
𝑑𝑡

𝜕𝐿
𝜕𝜃

 

−𝑚𝑔𝑙	𝑠𝑖𝑛𝜃 − 𝑚𝑙A𝜃 = 0 

𝑔	𝑠𝑖𝑛𝜃 + 𝑙𝜃 = 0 

𝜃 + (
𝑔
𝑙 )	𝑠𝑖𝑛𝜃 = 0 

This result is identical with the Newtonian result (See equation 3.15, Chapter 3).  

This is a remarkable result; it has been obtained by calculating the kinetic and potential 

energies in terms of 𝜃	rather than 𝑥 and then applying a set of operations designed for 

use with rectangular rather than angular coordinates.   

Another important characteristic of the method used in two preceding simple 

examples is that nowhere in the calculation did there enter any statement regarding 

force.  
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7.3 Generalized coordinates.      

Depending on the problem at hand, it may prove more convenient to choose 

some of the parameters with dimensions of energy, some with dimensions of 

(𝑙𝑒𝑛𝑔ℎ𝑡)A, some that are 𝑑𝑖𝑚𝑚𝑒𝑛𝑡𝑖𝑜𝑛𝑙𝑒𝑠𝑠	and so forth. We give the name generalized 

coordinates to any set of quantities that completely specifies the state of a system. The 

generalized coordinates are customarily written as 𝑞Q, 𝑞A, 𝑞R, … ..or simply as the 𝑞5. A 

set of independent generalized coordinates whose number equals the number 𝑠 of 

degrees of freedom of the system and not restricted by the constraints is called a proper 

set of generalized coordinates.  

In addition to the generalized coordinates, we may define a set of quantities 

consisting of time derivatives of 𝑞Q, 𝑞A ……… or simply 𝑞T.  

 

 

Example 7.3. Use the (𝑥, 𝑦) coordinate system in Figure 5.1 to find the kinetic energy 𝑇, 

potential energy 𝑈, and the Lagrangian L for a simple pendulum ( length 𝑙, mass bob 𝑚) 

moving in x,y plane .Determine the transformation equations from the (𝑥, 𝑦) rectangular 

system to the coordinate 𝜃. Find the equation of motion.   
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Fig. 7.1 A simple pendulum of length 𝑙 and bob of mass 𝑚.  

Answer:  

The kinetic and potential energies and the Lagrangian become  

𝑇 =
1
2𝑚𝑥

A +
1
2𝑚𝑦

A 

𝑈 = 𝑚𝑔𝑦 

𝐿 = 𝑇 − 𝑈 =
1
2𝑚𝑥

A +
1
2𝑚𝑦

A − 𝑚𝑔𝑦 

Inspection of figure 5.1 reveals that the motion can be better described by using 

𝜃 and 𝜃. Let’s transform 𝑥 and 𝑦 into the coordinate 𝜃 and then find 𝐿 in terms of 𝜃.  

𝑥 = 𝑙 sin 𝜃 

𝑦 = −𝑙 cos 𝜃	 

We now find for 𝑥 and 𝑦  

𝑥 = 𝑙 𝜃cos 𝜃 

𝑦 = 𝑙 𝜃sin 𝜃 

𝐿 =
𝑚
2 𝑙A𝜃A𝑐𝑜𝑠A𝜃 + 𝑙A𝜃A𝑠𝑖𝑛A𝜃 + 𝑚𝑔𝑙 cos 𝜃 

𝐿 =
𝑚
2 𝑙

A𝜃A + 𝑚𝑔𝑙 cos 𝜃 



	 7	

We can follow the same way used in Example 7.2 to get the equation of motion  

𝜃 + (
𝑔
𝑙 )	𝑠𝑖𝑛𝜃 = 0 

 

7.4 Lagrange’s Equations of motion in Generalized coordinates. 

To set up the variational form of Hamilton’s principle in generalized coordinate, we 

may take advantage of an important property of the Lagrangian we have not so far 

emphasized. The Lagrangian for a system is defined to be the differences between the 

kinetic and potential energies. But energy is a scale quantity and so the Lagrangian is 

a scale function. Hence the Lagrangian must be invariant with respect to coordinate 

transformations. However, certain transformations that change the Lagrangian but 

leave the equations of motion unchanged are allowed.  

We express the Lagrangian in terms of 𝑥Y,5 and 𝑥Y,5 or 𝑞T and 𝑞T 

  

𝐿 = 𝑇 𝑥Y,5 − 𝑈(𝑥Y,5)                                             (7.12) 

𝐿 = 𝑇(𝑞T ,	𝑞T, 𝑡) − 𝑈(𝑞T, 𝑡)                                     (7.13) 

that is  

𝐿 = 𝐿(𝑞Q ,𝑞Q, ……… . , 𝑞Z; 𝑞Q, 𝑞A, ……… , 𝑞Z, 𝑡)	      (7.14) 

𝐿 = 𝐿(𝑞T, 𝑞\,𝑡)	                                                        (7.15) 

Thus, Hamilton’s Principle becomes  

𝛿 𝐿(𝑞T, 𝑞\,𝑡)
+,
+-

𝑑𝑡 = 0                                            (7.16) 

89
8]^

− <
<+

89
8]^

= 0,								𝑗 = 1,2, … …… . . , 𝑠                 (7.17) 
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It is important to realize that the validity of Lagrange’s equation requires the 

following two conditions:  

1- The force acting on the system (apart from any forces of constraint) must 

be derivable from the potential  

2- The equations of constraint must be relations that connect the coordinates 

of the particles and may be functions of the time.  

 

 

 

 

Answer: 

 In Cartesian coordinate, we use 𝑥 (horizantoal) and  𝑦 ( vertical ). In polar 

coordinate, we use 𝑟 (in radial direction) and 𝜃 (elevation angle from horizontal)  

 

Example 7.4: Consider the case of projectile motion under gravity in two dimensions ( as 

was discussed in Chapter 2). Find the equations of motion in both Cartesian and polar 

coordinates.  
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Fig. 7.2 Projectile motion in two-dimensions 

 

𝑇 =
1
2𝑚𝑥

A +
1
2𝑚𝑦

A 

𝑈 = 𝑚𝑔𝑦 

Where 𝑈 = 0	𝑎𝑡	𝑦 = 0 

𝐿 = 𝑇 − 𝑈 =
1
2𝑚𝑥

A +
1
2𝑚𝑦

A − 𝑚𝑔𝑦 

We find the questions of motion by using Equation 7.17  

𝑥: 𝜕𝐿
𝜕𝑥 −

𝑑
𝑑𝑡
𝜕𝐿
𝜕𝑥 = 0 

0 −
𝑑
𝑑𝑡 	𝑚𝑥 = 0 

𝑥 = 0 

(7.18) 

 

𝑦: 

 

𝜕𝐿
𝜕𝑦 −

𝑑
𝑑𝑡
𝜕𝐿
𝜕𝑦 = 0 

−𝑚𝑔 −
𝑑
𝑑𝑡 (𝑚𝑦) = 0 

𝑦 = −𝑔 

 

(7.19) 

 

In polar coordinates, we have 

𝑇 =
1
2𝑚𝑟

A +
1
2𝑚(𝑟𝜃)

A 

𝑈 = 𝑚𝑔𝑟 sin 𝜃	 

Where 𝑈 = 0	for 𝜃 = 0 

𝐿 = 𝑇 − 𝑈 =
1
2𝑚𝑟

A +
1
2𝑚𝑟

A𝜃A − 𝑚𝑔𝑟 sin 𝜃	 
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𝑟: 𝜕𝐿
𝜕𝑟 −

𝑑
𝑑𝑡
𝜕𝐿
𝜕𝑟 = 0 

𝑚𝑟𝜃A − 	𝑚𝑔 sın 𝜃 −
𝑑
𝑑𝑡 (𝑚𝑟) = 0 

𝑟𝜃A − 𝑔 sin 𝜃 − 𝑟 = 0 

(7.20) 

 

𝜃: 

 

𝜕𝐿
𝜕𝜃 −

𝑑
𝑑𝑡
𝜕𝐿
𝜕𝜃

= 0 

−𝑚𝑔𝑟 cos 𝜃 −
𝑑
𝑑𝑡 (𝑚𝑟

A𝜃) = 0 

−𝑔𝑟 cos 𝜃 − 2𝑟𝑟𝜃 − 𝑟A𝜃 = 0 

 

 

 

 

 

 

 

 

 

 

 

 

 

(7.21) 
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Example 7.5: The point of support of a simple pendulum of length 𝑏 moves on massless 

rim of radius 𝑎 rotating with constant angular velocity 𝜔. Obtain the expression for the 

Cartesian components of the velocity and acceleration of the mass 𝑚. Obtain also the 

angular acceleration for the angle 𝜃 shown in the figure below. 

 

We choose the origin of our coordinate system to be at the center of the rotating rim. The 

Cartesian components of mass 𝑚 become   

𝑥 = 𝑎 cos𝜔𝑡 + 𝑏 sin 𝜃 

𝑦 = 𝑎 sin𝜔𝑡 − 𝑏 cos 𝜃 
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The velocities are  

𝑥 = −𝑎𝜔 sin𝜔𝑡 + 𝑏𝜃 cos 𝜃 

𝑦 = 𝑎𝜔 cos𝜔𝑡 + 𝑏𝜃 sin 𝜃 

Taking the time derivative once again gives the acceleration: 

𝑥 = −𝑎𝜔A cos𝜔𝑡 + 𝑏(𝜃 cos 𝜃 − 𝜃A sin 𝜃) 

𝑦 = −𝑎	𝜔A sin𝜔𝑡 + 𝑏(𝜃 sin 𝜃 + 𝜃A cos 𝜃) 

It should be clear that the single generalized coordinate is 𝜃. The kinetic and potential 

energies are 

𝑇 =
1
2 	𝑚	(𝑥

A + 𝑦A) 

𝑈 = 𝑚𝑔𝑦 

Where 𝑈 = 0 at 𝑦 = 0, The Lagrangian is 

𝐿 = 𝑇 − 𝑈 =
𝑚
2 [𝑎

A𝜔A + 𝑏A𝜃A + 2𝑏𝜃𝑎𝜔 sin(𝜃 − 𝜔𝑡)] − 𝑚𝑔(𝑎 sin𝜔𝑡 − 𝑏 cos 𝜃) 

The derivatives for the Lagrange equation equation of motion for 𝜃 are  

<
<+
	 89
8h

= 𝑚𝑏2𝜃 + 𝑚𝑏𝑎𝜔	 𝜃 − 𝜔 cos 𝜃 − 𝜔𝑡   

𝜕𝐿
𝜕𝜃 = 𝑚𝑏𝜃𝑎𝜔 cos 𝜃 − 𝜔𝑡 − 𝑚𝑔𝑏 sin 𝜃) 

We can get the equation of motion after solving for 𝜃  

𝜃 =
𝜔A𝑎
𝑏 cos 𝜃 − 𝜔𝑡 −

𝑔
𝑏 sin 𝜃 

Notice that this result reduces to well-known equation of motion for a simple pendulum 

if 𝜔 = 0.  
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